Monday, May 16, 2022
HomeNanotechnologyDevelopment and software of star polycation nanocarrier-based microRNA supply system in Arabidopsis...

Development and software of star polycation nanocarrier-based microRNA supply system in Arabidopsis and maize | Journal of Nanobiotechnology

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP. MicroRNAs in crops. Genes Dev. 2002;16:1616–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen XM. MicroRNA biogenesis and performance in crops. Febs Lett. 2005;579:5923–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang BH, Pan XP, Cobb GP, Anderson TA. Plant microRNA: a small regulatory molecule with large impression. Dev Biol. 2006;289:3–16.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mallory AC, Vaucheret H. Capabilities of microRNAs and associated small RNAs in crops. Nat Genet. 2006;38:S31–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grey GD, Basu S, Wickstrom E. Remodeled and immortalized mobile uptake of oligodeoxynucleoside phosphorothioates, 3′-Alkylamino oligodeoxynucleotides, 2′-o-methyl oligoribonucleotides, oligodeoxynucleoside methylphosphonates, and peptide nucleic acids. Biochem Pharmacol. 1997;53:1465–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese Okay, Kaufmann J. Structural variations and stabilising modifications of artificial siRNAs in mammalian cells. Nucleic Acids Res. 2003;31:2705–16.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Raemdonck Okay, Vandenbroucke RE, Demeester J, Sanders NN, De Smedt SC. Sustaining the silence: reflections on long-term RNAi. Drug Discov Right this moment. 2008;13:917–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pereira DM, Rodrigues PM, Borralho PM, Rodrigues CMP. Delivering the promise of miRNA most cancers therapeutics. Drug Discov Right this moment. 2013;18:282–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, et al. Advancing crop transformation within the period of genome modifying. Plant Cell. 2016;28:1510–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The historical past of nanoscience and nanotechnology: from chemical–bodily functions to nanomedicine. Molecules. 2020;25:112.

    CAS 
    Article 

    Google Scholar
     

  • Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V. MicroRNA supply via nanoparticles. J Management Launch. 2019;313:80–95.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee CM, Jang D, Kim J, Cheong SJ, Kim EM, Jeong MH, Kim SH, Kim DW, Lim ST, Sohn MH, et al. Oleyl-Chitosan nanoparticles based mostly on a twin probe for optical/MR imaging in vivo. Bioconjugate Chem. 2011;22:186–92.

    CAS 
    Article 

    Google Scholar
     

  • Liu CY, Wen J, Meng YB, Zhang KL, Zhu JL, Ren Y, Qian XM, Yuan XB, Lu YF, Kang CS. Environment friendly supply of therapeutic miRNA nanocapsules for tumor suppression. Adv Mater. 2015;27:292–7.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Yan S, Ren BY, Shen J. Nanoparticle-mediated double-stranded RNA supply system: a promising strategy for sustainable pest administration. Insect Sci. 2021;28:21–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang JL, Chen CR, Fu H, Yu J, Solar Y, Huang H, Tang YJ, Shen N, Duan YR. MicroRNA-125a-loaded polymeric nanoparticles alleviate systemic lupus erythematosus by restoring effector/regulatory T cells steadiness. ACS Nano. 2020;14:4414–29.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang H, Demirer GS, Zhang HL, Ye TZ, Goh NS, Aditham AJ, Cunningham FJ, Fan CH, Landry MP. DNA nanostructures coordinate gene silencing in mature crops. Proc Natl Acad Sci. 2019;116:7543–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Torney F, Trewyn BG, Lin VSY, Wang Okay. Mesoporous silica nanoparticles ship DNA and chemical compounds into crops. Nat Nanotechnol. 2007;2:295–300.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev Okay, Snell KD, Search engine marketing JS, Chua NH, Strano MS. Chloroplast-selective gene supply and expression in planta utilizing chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol. 2019;14:447–55.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang L, Ding L, He BC, Shen J, Xu ZJ, Yin MZ, Zhang XL. Systemic gene silencing in crops triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale. 2014;6:9965–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP. Clay nanosheets for topical supply of RNAi for sustained safety towards plant viruses. Nat Crops. 2017;3:16207.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers ship siRNA to intact plant cells for environment friendly gene knockdown. Sci Adv. 2020;6:eaaz0495.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhang H, Cao Y, Xu D, Goh NS, Yang P, Demirer G, Blanco S, Chen Y, Landry M, Yang P. Gold-nanocluster-mediated supply of siRNA to intact plant cells for environment friendly gene knockdown. Nano Lett. 2021;21:5859–66.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Doyle C, Higginbottom Okay, Swift TA, Winfield M, Whitney HM. A easy technique for spray-on gene modifying in planta. bioRxiv. 2019. https://doi.org/10.1101/805036.

    Article 

    Google Scholar
     

  • Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio FA, Zhai R, et al. Nanoparticle mobile internalization shouldn’t be required for RNA supply to mature plant leaves. Nat Nanotechnol. 2021;17:197–205.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Mujtaba M, Wang D, Carvalho LB, Oliveira JL, Pereira A, Sharif R, Jogaiah S, Paidi M, Wang L, Ali Q, et al. Nanocarrier-mediated supply of miRNA, RNAi, and CRISPR-Cas for plant safety: present developments and future instructions. ACS Environ Sci Technol. 2021;1:417–35.

    CAS 

    Google Scholar
     

  • Yan S, Qian J, Cai C, Ma ZZ, Li JH, Yin MZ, Ren BY, Shen J. Spray technique software of transdermal dsRNA supply system for environment friendly gene silencing and pest management on soybean aphid Aphis glycines. J Pest Sci. 2020;93:449–59.

    Article 

    Google Scholar
     

  • Li JH, Qian J, Xu YY, Yan S, Shen J, Yin MZ. A facile-synthesized star polycation constructed as a extremely environment friendly gene vector in pest administration. Acs Maintain Chem Eng. 2019;7:6316–22.

    CAS 
    Article 

    Google Scholar
     

  • Yan S, Hu Q, Li JH, Chao ZJ, Cai C, Yin MZ, Du XG, Shen J. A star polycation acts as a drug nanocarrier to enhance the toxicity and persistence of botanical pesticides. ACS Maintain Chem Eng. 2019;7:17406–13.

    CAS 
    Article 

    Google Scholar
     

  • Wang XD, Zheng KK, Cheng WY, Li J, Liang XX, Shen J, Dou DL, Yin MZ, Yan S. Subject software of star polymer-delivered chitosan to amplify plant protection towards potato late blight. Chem Eng J. 2021;417: 129327.

    CAS 
    Article 

    Google Scholar
     

  • Zhang YH, Ma ZZ, Zhou H, Chao ZJ, Yan S, Shen J. Nanocarrier-delivered dsRNA suppresses wing growth of inexperienced peach aphids. Insect Sci. 2021. https://doi.org/10.1111/1744-7917.12953.

    Article 
    PubMed 

    Google Scholar
     

  • Yan S, Cheng WY, Han ZH, Wang D, Yin MZ, Du XG, Shen J. Nanometerization of thiamethoxam by a cationic star polymer nanocarrier effectively enhances the contact and plant-uptake dependent abdomen toxicity towards inexperienced peach aphids. Pest Manag Sci. 2021;77:1954–62.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jiang Q, Xie Y, Peng M, Wang Z, Li T, Yin M, Shen J, Yan S. Nanocarrier-pesticide supply system with promising advantages in a case of dinotefuran: strikingly enhanced bioactivity and lowered pesticide residue. Environ Sci Nano. 2022;9:988–99.

    CAS 
    Article 

    Google Scholar
     

  • Yan S, Hu Q, Jiang Q, Chen H, Wei J, Yin M, Du X, Shen J. Easy osthole/nanocarrier pesticide effectively controls each pests and illnesses fulfilling the necessity of inexperienced manufacturing of strawberry. ACS Appl Mater Inter. 2021;13:36350–60.

    CAS 
    Article 

    Google Scholar
     

  • Li M, Ma Z, Peng M, Li L, Yin M, Yan S, Shen J. A gene and drug co-delivery software helps to unravel the quick life drawback of RNA drug. Nano Right this moment. 2022. https://doi.org/10.1016/j.nantod.2022.101452.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Kim VN, et al. MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular growth in Arabidopsis inflorescence stems. Plant J. 2010;42:84–94.

    Article 
    CAS 

    Google Scholar
     

  • Williams L, Grigg SP, Xie MT, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP goal genes. Dev. 2005;132:3657–68.

    CAS 
    Article 

    Google Scholar
     

  • Jung JH, Park CM. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral growth in Arabidopsis. Planta. 2007;225:1327–38.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Merelo P, Ram H, Caggiano MP, Ohno C, Ott F, Straub D, Graeff M, Cho SK, Yang SW, Wenkel S, et al. Regulation of MIR165/166 by class II and sophistication III homeodomain leucine zipper proteins establishes leaf polarity. Proc Natl Acad Sci. 2016;113:11973–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li J, Guo G, Guo W, Guo G, Tong D, Ni Z, Solar Q, Yao Y. MiRNA164-directed cleavage of ZmNAC1 confers lateral root growth in maize (Zea mays L.). BMC Plant Biol. 2012;12:220.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cho SK, Dang C, Wang X, Ragan R, Kwon Y. Mixing-sequence-dependent nucleic acid complexation and gene switch effectivity by polyethylenimine. Biomater Sci. 2015;3:1124–33.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang XR, Henriques R, Lin SS, Niu QW, Chua NH. Agrobacterium-mediated transformation of Arabidopsis thaliana utilizing the floral dip technique. Nat Protoc. 2006;1:641–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F. FRET imaging in dwelling maize cells reveals that plasma membrane aquaporins work together to control their subcellular localization. Proc Natl Acad Sci. 2007;104:12359–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bernhard W, Haagsman HP, Tschernig T, Poets CF, Postle AD, Eijk ME, Hardt H. Conductive airway surfactant: surface-tension perform, biochemical composition, and attainable alveolar origin. Am J Resp Cell Mol. 1997;17:41–50.

    CAS 
    Article 

    Google Scholar
     

  • Livak KJ, Schmittgen TD. Evaluation of relative gene expression knowledge utilizing real-time quantitative PCR and the two-ΔΔCT technique. Strategies. 2001;25:402–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Solar Q, Liu X, Yang J, Liu W, Du Q, Wang H, Fu C, Li WX. MicroRNA528 impacts lodging resistance of maize by regulating lignin biosynthesis below nitrogen-luxury situations. Mol Plant. 2018;11:806–14.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ma Z, Zheng Y, Chao Z, Chen H, Zhang Y, Yin M, Shen J, Yan S. Visualization of the method of a nanocarrier-mediated gene supply: stabilization, endocytosis, endosomal escape and exocytosis of genes for intercellular spreading. J Nanobiotechnol. 2022;20:124.

    CAS 
    Article 

    Google Scholar
     

  • Giehl R, Wiren NV. Root nutrient foraging. Plant Physiol. 2014;166:509–17.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Solar XD, Yuan XZ, Jia Y, Feng LJ, Zhu FP, Dong SS, Liu J, Kong X, Tian H, Duan JL, et al. Differentially charged nanoplastics show distinct accumulation in Arabidopsis thaliana. Nat Nanotechnol. 2020;15:755–60.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fan LS, Li RL, Pan JW, Ding ZJ, Lin JX. Endocytosis and its regulation in crops. Tendencies Plant Sci. 2015;20:388–97.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bazinet C, Katzen AL, Morgan M, Mahowald AP, Lemmon SK. The Drosophila clathrin heavy chain gene: clathrin perform is crucial in a multicellular organism. Genetics. 1993;134:1119–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Schmid SL. Clathrin-coated vesicle formation and protein sorting: an built-in course of. Annu Rev Biochem. 1997;66:511–48.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nesbit MA, Hannan FM, Howles SA, Reed AAC, Cranston T, Thakker CE, Gregory L, Rimmer AJ, Rust N, Graham U, et al. Mutations in AP2S1 trigger familial hypocalciuric hypercalcemia sort 3. Nat Genet. 2013;45:93–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xiao D, Gao X, Xu J, Liang X, Li Q, Yao J, Zhu KY. Clathrin-dependent endocytosis performs a predominant function in mobile uptake of double-stranded RNA within the purple flour beetle. Insect Biochem Mol Biol. 2015;60:68–77.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Qi X, Zheng H. Rab-A1c GTPase defines a inhabitants of the trans-Golgi community that’s delicate to endosidin1 throughout cytokinesis in Arabidopsis. Mol Plant. 2013;6:847–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Jackson CL, Bouvet S. Arfs at a look. J Cell Sci. 2014;127:4103–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A flexible vector for gene and oligonucleotide switch into cells in tradition and in vivo: polyethylenimine. Proc Natl Acad Sci USA. 1995;92:7297–301.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sonawane ND, Szoka FC, Verkman AS. Chloride accumulation and swelling in endosomes enhances DNA switch by polyamine-DNA polyplexes. J Biol Chem. 2003;278:44826–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Moret I, Peris JE, Guillem VM, Benet M, Revert F, Dasí F, Crespo A, Aliñoa S. Stability of PEI-DNA and DOTAP-DNA complexes: impact of alkaline pH, heparin and serum. J Managed Launch. 2001;76:169–81.

    CAS 
    Article 

    Google Scholar
     

  • Kwon YJ. Earlier than and after endosomal escape: Roles of stimuli-converting siRNA/polyer interactions in figuring out gene silencing effectivity. Acc Chem Res. 2012;45:1077–88.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene relations have overlapping, antagonistic, and distinct roles in Arabidopsis growth. Plant Cell. 2005;17:61–76.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Y, Honda M, Zhu H, Zhang Z, Guo X, Li T, Li Z, Peng X, Nakajima Okay, Duan L, et al. Spatiotemporal sequestration of miR165/166 by Arabidopsis argonaute10 promotes shoot apical meristem upkeep. Cell Rep. 2015;10:1819–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments